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Abstract

William Poundstone’s (2005) book, Fortune’s Formula, brought the Kelly capital
growth criterion to the attention of investors. But how do full Kelly and fractional
Kelly strategies that blend with cash actually preform in practice? To investigate this
we revisit three simple investment situations and simulate the behavior of these strate-
gies over medium term horizons using a large number of scenarios. These examples are
from Bicksler and Thorp (1973) and Ziemba and Hausch (1986) and we consider many
more scenarios and strategies. The results show:

1. the great superiority of full Kelly and close to full Kelly strategies over longer
horizons with very large gains a large fraction of the time;

2. that the short term performance of Kelly and high fractional Kelly strategies is
very risky;

3. that there is a consistent tradeoff of growth versus security as a function of the
bet size determined by the various strategies; and

4. that no matter how favorable the investment opportunities are or how long the
finite horizon is, a sequence of bad scenarios can lead to very poor final wealth
outcomes, with a loss of most of the investor’s initial capital.

Hence, in practice, financial engineering is important to deal with the short term
volatility and long run situations with a sequence of bad scenarios. But properly
used, the strategy has much to commend it, especially in trading with many repeated
investments. [EFM Classification: 370]
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Introduction

In 1738 Daniel Bernoulli postulated that the marginal utility of an extra amount of money
was proportional to the person’s wealth. So u′(w) = 1

w where u is the investor’s utility
function, primes denote derivatives and w is wealth. Integrating gives u(w) = logw. So log
is the suggested utility function. Kelly (1956) and Latané (1959) argued that maximizing
the expected utility with a log utility function is equivalent to the maximization of the long
run growth rate. A derivation of this appears below. Breiman (1961) showed that the Kelly
capital growth criterion had two long run properties. First, it maximizes the asymptotic
long run growth rate. Secondly, it minimizes the time to achieve asymptotically large
investment goals.

Discussion of various aspects of expected log maximization Kelly strategies and fractional
Kelly strategies where one blends the Kelly strategy with cash are in the following papers:
Browne (1998), Hakansson and Ziemba (1995), MacLean, Ziemba and Blazenko (1992),
MacLean, Ziemba and Li (2005), McEnally (1986), Merton and Samuelson (1974), Mulvey,
Pauling and Madey (2003), Rubinstein (1976, 1991), Samuelson (1969, 1971, 1979), Stutzer
(2000, 2004), Thorp (2006, 2010), Wilcox (2003ab, 2005) and Ziemba (2010). Ziemba
(2005) discusses the use of Kelly strategies by great investors such as Keynes, Buffett,
Soros and others. Use of the Kelly strategies by Morningstar and Motley Fool are discussed
by Fuller (2006) and Lee (2006). They follow Poundstone (2005) and fail to understand
the multivariate aspects of multiple assets, short term risk, transaction costs and other
features of these strategies. The book MacLean, Thorp and Ziemba (2010a) provides a
fuller analysis of the advantages and disadvantages, theory and practice of these strategies
and additional references. The Kelly capital growth model in the simplest case is derived
as follows:

The asymptotic rate of asset growth is

G = lim
N→∞

log

(
wN
w0

) 1
N

,

where w0 is initial wealth and wN is period N’s wealth. Consider Bernoulli trials that win
+1 with probability p and lose −1 with probability 1− p. If we win M out of N of these
independent trials, then the wealth after period N is

wN = w0(1 + f)M (1− f)N−M

where f is the fraction of our wealth bet in each period. Then

G(f) = lim
N→∞

[
M

N
log(1 + f) +

N −M
N

log(1− f)
]

which by the strong law of large numbers is
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G(f) = plog(1 + f) + qlog(1− f) = E log(w).

Hence, the criterion of maximizing the long run exponential rate of asset growth is equiv-
alent to maximizing the one period expected logarithm of wealth. So, to maximize long
run (asymptotic) wealth maximizing expected log is the way to do it period by period.
See MacLean, Thorp and Ziemba (2010a) for papers that generalize these simple Bernoulli
trial asset return assumptions.

The optimal fractional bet, obtained by setting the derivative of G(f) to zero, is f∗ = p−q
which is simply the investor’s edge or the expected gain on the bet.1 If the bets are win
O+ 1 or lose 1, that is the odds are O to 1 to win, then the edge is pO− q and the optimal
Kelly bet is f∗ = pO−q

O or the edge
odds . Since the edge pO − q is the measure of the mean

and the odds is a risk concept, you wager more with higher mean and less with higher
risk.

Observe that the bets can be very large. For example, if p = .99 and q = .01, the optimal
bet is 98% of one’s fortune! A real example of this by Mohnish Pabrai (2007), who won
the bidding for the 2008 lunch with Warren Buffett paying more than $600,000, had the
following investment in Stewart Enterprises as discussed by Thorp (2010). Over a 24-
month period, with probability 0.80 the investment at least doubles, with 0.19 probability
the investment breaks even and with 0.01 probability all the investment is lost. The optimal
Kelly bet is 97.5% of wealth, half Kelly is 38.75%. Pabrai invested 10%. While this seems
rather low, other investment opportunities, miscalculation of probabilities, risk tolerance,
possible short run losses, bad scenario Black Swan events, price pressures, buying in and
exiting suggest that a bet a lot lower than 97.5% is appropriate.

In general, Kelly bets are large and risky short term. One sees that from the Arrow-Pratt
absolute risk aversion of the log utility criterion

RA(w) =
−u′′(w)
u′(w)

= 1/w

which is essentially zero for non-bankrupt investors. Hence, log can be an exceedingly
risky utility function with wide swings in wealth values because the optimal bets can be
so large.

1If there are two independent wagers and the size of the bets does not influence the odds, then an
analytic expression can be derived, see Thorp (2006). In general, to solve for the optimal wagers in cases
where the bets influence the odds, there is dependence, or for cases with three or more wagers, one must
solve a non-convex nonlinear program, see Ziemba and Hausch (1987) for techniques. This gives the optimal
wager taking into account the effect of our bets on the odds (prices).
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Chopra and Ziemba (1993) investigated the effect of errors in mean, variance and covariance
estimates in portfolio problems and show that the relative error impact is risk aversion
dependent. For example, for typical problems there is a 20:2:1 ratio implying that errors in
estimating the mean are ten times variance errors and twenty times co-variance errors in
certainty equivalent value. But for log utility with extremely low risk aversion, this is more
like 100:3:1. What’s clear is that getting means correctly estimated is crucial for portfolio
success.

Log utility is related to negative power utility, since with αwα for α < 0 since negative
power converges to log when α → 0. So we can think of log as being the most risky
and extreme negative power utility function. MacLean, Ziemba and Li (2005) have shown
that the handy formula for the fraction f = 1

1−α is optimal when the asset returns are
lognormal. Here k is the Kelly strategy and fxk is the fractional Kelly strategy. But,
as Thorp (2010) has shown, this approximation can be poor if the assets are far from
lognormal. Betting more than the Kelly amount leads to lower growth and more risk.
That is linked to positive power utility which is to be avoided as it will invariably lead to
disaster. See Ziemba and Ziemba (2007) for a discussion of some of these overbet disasters
including LTCM, Niederhoffer and Amarath.

In continuous time, the long term optimal growth rate is

G∗ =
1
2

(
µ− r
σ

)2

+ r =
1
2

(Sharpe Ratio)2 + risk free asset,

where µ is the mean portfolio return, r is the risk free return and σ2 is the portfolio return
variance. So the ordinary Sharpe ratio determines the optimal growth rate.

A very important question is how much of an investor’s wealth should be allocated to
investments including cash and other assets using the Kelly or fractional Kelly criterions.
The capital growth literature has optimal dynamic consumption-investment models such
as Phelps (1962), Samuelson (1969), Hakansson (1970), etc. Ziemba-Vickson (1975, 2006)
and MacLean, Thorp and Ziemba (2010a) discuss many of these models.

One way to look at this is to assume that there is consumption (c) and discretionary wealth
(w− c). Wilcox (2003) has studied this and notes that discretionary wealth can be written
in terms of an implicit leverage ratio L = w

w−c . The returns on risky assets are weighted or
rescaled to reflect leveraging. The weighted return on a unit of capital invested is 1 +xLR
where x and 1 − x are the fractions in risky assets and risk free assets, respectively, and
R is the random rate of return on the risky asset portfolio. The standard Kelly problem
is maxER log(1 + xR) with Kelly optimal strategy weighting x∗. Wilcox’s modification is
maxE log(1 + xLR). So if xw is a solution to this model - how does it relate to the Kelly
weighting x∗? It is clear that xw = 1

Lx
∗ so the Wilcox discretionary portfolio is a fractional

Kelly strategy.
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This is not surprising since fractional Kelly strategies are a blend of the Kelly weighting
and cash. The higher L = w

w−c is the lower is the optimal Kelly fraction. Wilcox discusses
some implications of the impact of leverage. Higher leverage investors are sensitive to
fat tails in the returns distribution and will reduce the Kelly fraction strategy. In this
paper we analyze the returns at the end of 40 periods and other horizons and show wealth
trajectories and how the Kelly fraction affects those trajectories.

Motivation for this paper

The Kelly optimal capital growth investment strategy has many attractive long run theoret-
ical properties. MacLean, Thorp and Ziemba (2010b) discuss the good and bad properties.
It has been dubbed “fortunes formula” by Thorp (see Poundstone, 2005). However, the
attractive long run properties are countered by negative short to medium term behavior
based on conservative utility functions because of the almost zero Arrow-Pratt risk aversion
of log utility. In this paper, the empirical performance of various Kelly and fractional Kelly
strategies is considered in realistic investment situations. Three experiments from the lit-
erature (Ziemba and Hausch, 1986 and Bicksler and Thorp, 1973) are more fully examined
with many more scenarios and strategies. The class of investment strategies generated by
varying the fraction of investment capital allocated to the Kelly portfolio are applied to
simulated returns from the models, and the distribution of final wealth is described.

Fractional Kelly Strategies: The Ziemba and Hausch Experi-
ment

Consider an investment situation with five possible independent investments where one
wagers $1 and either loses it with probability 1 − p or wins $ (O + 1) with probability p,
with odds 0 to 1. The five wagers with odds of O = 1, 2, 3, 4 and 5 to one all have the
same expected value of 1.14. The optimal Kelly wagers in the one dimensional case are
the expected value edge of 14% over the odds. Hence the wagers are from 14%, down to
2.8% of initial and current wealth at each decision point for the five investments. Table 1
describes these investments. The value 1.14 was chosen as it is the recommended cutoff for
profitable place and show racing bets using the system described in Ziemba and Hausch
(1986).

Ziemba and Hausch (1986) used 700 decision points and 1000 scenarios and compared
full with half Kelly strategies. We use the same 700 decision points and 2000 scenarios
and calculate more attributes of the various strategies. We use full, 3/4, 1/2, 1/4, and
1/8 Kelly strategies and compute the maximum, mean, minimum, standard deviation,
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Win Probability Odds Prob of Selection in Simulation Kelly Bets
0.570 1-1 0.1 0.140
0.380 2-1 0.3 0.070
0.285 3-1 0.3 0.047
0.228 4-1 0.2 0.035
0.190 5-1 0.1 0.028

Table 1: The Investment Opportunities

skewness, excess kurtosis and the number out of the 2000 scenarios for which the final
wealth starting from an initial wealth of $1000 is more than $50, $100, $500 (lose less than
half), $1000 (breakeven), $10,000 (more than 10-fold), $100,000 (more than 100-fold), and
$1 million (more than a thousand-fold). Table 2 shows these results and illustrates the
conclusions listed in the abstract. The final wealth levels are much higher on average, the
higher the Kelly fraction. With 1/8 Kelly, the average final wealth is $2072, starting with
$1000. It is $4339 with 1/4 Kelly, $19,005 with half Kelly, $70,991 with 3/4 Kelly and
$524,195 with full Kelly. So as you approach full Kelly, the typical final wealth escalates
dramatically. This is shown also in the maximum wealth levels which for full Kelly is
$318,854,673 versus $6330 for 1/8 Kelly.

Kelly Fraction
Statistic 1.0k 0.75k 0.50k 0.25k 0.125k

Max 318854673 4370619 1117424 27067 6330
Mean 524195 70991 19005 4339 2072
Min 4 56 111 513 587

St. Dev. 8033178 242313 41289 2951 650
Skewness 35 11 13 2 1
Kurtosis 1299 155 278 9 2
> 5× 10 1981 2000 2000 2000 2000

102 1965 1996 2000 2000 2000
> 5× 102 1854 1936 1985 2000 2000
> 103 1752 1855 1930 1957 1978
> 104 1175 1185 912 104 0
> 105 479 284 50 0 0

> 10
6

111 17 1 0 0

Table 2: Final Wealth Statistics by Kelly Fraction for the Ziemba and Hausch Model

Figure 1 shows the wealth paths of these maximum final wealth levels. Most of the gain
is in the final 100 of the 700 decision points. Even with these maximum graphs, there
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is much volatility in the final wealth with the amount of volatility generally higher with
higher Kelly fractions. Indeed with 3/4 Kelly, there were losses from about decision points
610 to 670.

Figure 1: Highest Final Wealth Trajectory for the Ziemba and Hausch Model

Considering the chance of losses (final wealth is less than the initial $1000) in all cases, even
with 1/8 Kelly with 1.1% and 1/4 Kelly with 2.15%, there are losses with 700 independent
bets each with an edge of 14%. For full Kelly, it is fully 12.4% losses, and it is 7.25% with
3/4 Kelly and 3.5% with half Kelly. These are just the percent of losses. But the size of
the losses can be large as shown in the > 50, > 100, and > 500 rows of Table 2. The
minimum final wealth levels were 587 for 1/8 and 513 for 1/4 Kelly so you never lose more
than half your initial wealth with these lower risk betting strategies. But with 1/2, 3/4 and
full Kelly, the minimums were 111, 56, and only $4. Figure 2 shows these minimum wealth
paths. With full Kelly, and by inference 1/8, 1/4, 1/2, and 3/4 Kelly, the investor can
actually never go fully bankrupt because of the proportional nature of Kelly betting.

If capital is infinitely divisible and there is no leveraging, then the Kelly bettor cannot go
bankrupt since one never bets everything (unless the probability of losing anything at all
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Figure 2: Lowest Final Wealth Trajectory for the Ziemba and Hausch Model
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is zero and the probability of winning is positive). If capital is discrete, then presumably
Kelly bets are rounded down to avoid overbetting, in which case, at least one unit is never
bet. Hence, the worst case with Kelly is to be reduced to one unit, at which point betting
stops. Since fractional Kelly bets less, the result follows for all such strategies. For levered
wagers, that is, betting more than one’s wealth with borrowed money, the investor can lose
more than their initial wealth and become bankrupt.

Proportional Investment Strategies: Alternative Experiments

The growth and risk characteristics for proportional investment strategies such as the Kelly
depend upon the returns on risky investments. We now consider two other investment ex-
periments where the return distributions are quite different. The mean returns are similar:
14% for Ziemba-Hausch, 12.5% for Bicksler-Thorp Example I, and 10.2% for Bicksler-Thorp
Example II. However, the variation around the mean is not similar and this produces much
different Kelly strategies and corresponding wealth trajectories for scenarios. The third
experiment involves two assets: risky stock and safe cash which can be levered to produce
considerable losses as well as large gains.

The Ziemba and Hausch Model

The first experiment looks further at the Ziemba and Hausch (1986) model. A simulation
was performed with 3000 scenarios over T = 40 decision points with the five types of
independent investments for various investment strategies. The Kelly fractions and the
proportion of wealth invested are in Table 3. Here, 1.0k is full Kelly, the strategy which
maximizes the expected logarithm of wealth. Values below 1.0 are fractional Kelly and
coincide approximately with the decision from using a negative power utility function.
The approximation f = 1

1−α , where fxk is the fractional Kelly strategy and α < 0 is from
the negative power utility function αwα, is exactly correct for lognormally distributed
assets and approximately correct otherwise, see MacLean, Ziemba and Li (2005) for proof.
But the approximation can be poor for asset distributions far from log normal; see Thorp
(2010). Values above 1.0 coincide with those from some positive power utility function.
This is overbetting according to MacLean, Ziemba and Blazenko (1992), because the long
run growth rate falls and security (measured by the chance of reaching a specific positive
goal before falling to a negative growth level) also falls. This is very important and not fully
understood by many hedge fund and other investors. Long Term Capital’s 1998 demise
from overbetting is a prime example. Examples of other similar blowouts are discussed in
Ziemba and Ziemba (2007). They argue that the recipe for hedge fund disaster is almost
always the same: the portfolio is overbet and not well diversified in some scenarios and
then a bad scenario occurs in a non-diversified part of the portfolio and disaster quickly
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follows. The trouble is that the penalty for losses, especially with large portfolios in the
billions is way too low. Fees are kept and fired traders either retire or get rehired by other
funds. Examples include John Merriwether, Victor Niederhoffer and Brian Hunter.

Kelly Fraction: f
Opportunity 1.75k 1.5k 1.25k 1.0k 0.75k 0.50k 0.25k

A 0.245 0.210 0.175 0.140 0.105 0.070 0.035
B 0.1225 0.105 0.0875 0.070 0.0525 0.035 0.0175
C 0.08225 0.0705 0.05875 0.047 0.03525 0.0235 0.01175
D 0.06125 0.0525 0.04375 0.035 0.02625 0.0175 0.00875
E 0.049 0.042 0.035 0.028 0.021 0.014 0.007

Table 3: The Investment Proportions (λ) and Kelly Fractions. The investment proportions
λ’s are full Kelly as in the 5th column; see Table 1. The other proportions are scaled from
the Kelly fractions f in this column

The initial wealth for investment was 1000. Table 4 reports final wealth statistics on the
for T = 40 periods with the various strategies.

Fraction
Statistic 1.75k 1.5k 1.25k 1.0k 0.75k 0.50k 0.25k

Max 50364.73 25093.12 21730.90 8256.97 6632.08 3044.34 1854.53
Mean 1738.11 1625.63 1527.20 1386.80 1279.32 1172.74 1085.07
Min 42.77 80.79 83.55 193.07 281.25 456.29 664.31

St. Dev. 2360.73 1851.10 1296.72 849.73 587.16 359.94 160.76
Skewness 6.42 4.72 3.49 1.94 1.61 1.12 0.49
Kurtosis 85.30 38.22 27.94 6.66 5.17 2.17 0.47
> 5× 10 2998 3000 3000 3000 3000 3000 3000

102 2980 2995 2998 3000 3000 3000 3000
> 5× 102 2338 2454 2634 2815 2939 2994 3000
> 103 1556 11606 1762 1836 1899 1938 2055
> 104 43 24 4 0 0 0 0
> 105 0 0 0 0 0 0 0

> 10
6

0 0 0 0 0 0 0

Table 4: Wealth Statistics by Kelly Fraction for the Ziemba and Hausch Model

Since the Kelly bets are small, the proportion of current wealth invested is not high for
any of the fractions. The upside and down side are not dramatic in this example, although
there is a substantial gap between the maximum and minimum wealth with the highest
fraction. Figure 3 shows the trajectories which have the highest and lowest final wealth
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for a selection of fractions. The log-wealth is displayed to show the rate of growth at each
decision point. The lowest trajectories are almost a reflection of the highest ones.

The skewness and kurtosis indicate that final wealth is not normally distributed. This is
expected since the geometric growth process suggests a log-normal wealth. Figure 4 dis-
plays the simulated log-wealth for selected fractions at the horizon T = 40. The normal
probability plot will be linear if terminal wealth is distributed log-normally. The slope
of the plot captures the shape of the log-wealth distribution. For this example the final
wealth distribution is close to log-normal. As the Kelly fraction increases the slope in-
creases, showing the longer right tail but also the increase in downside risk in the wealth
distribution.

On the inverse cumulative distribution plot, the initial wealth ln(1000) = 6.91 is indicated
to show the chance of losses. And indeed there can be considerable losses as shown in
the left side of Figure 4a. The inverse cumulative distribution of log-wealth is the basis
of comparisons of accumulated wealth at the horizon. In particular, if the plots intersect
then first order stochastic dominance by a wealth distribution does not exist (Hanoch and
Levy, 1969). The mean and standard deviation of log-wealth are considered in Figure 5,
where the growth versus security trade-off by Kelly fraction is shown. The mean log-wealth
peaks at the full Kelly strategy whereas the standard deviation is monotone increasing.
Fractional strategies greater than full Kelly are inefficient in log-wealth, since the growth
rate decreases and the standard deviation of log-wealth increases. It is these where the
hedge fund disasters occur.

We have the following conclusions:

1. The statistics describing end of horizon (T = 40) wealth are all monotone in the
fraction of wealth invested in the Kelly portfolio. The maximum terminal wealth
and the mean terminal wealth increase in the Kelly fraction. In contrast the min-
imum wealth decreases as the fraction increases and the standard deviation grows
as the fraction increases. There is a trade-off between wealth growth and risk. The
cumulative distributions in Figure 4 supports the theory for fractional strategies, as
there is no dominance, and the distribution plots all intersect.

2. The maximum and minimum final wealth trajectories show the wealth growth - risk
trade-off of the strategies. The worst scenario is the same for all Kelly fractions so
that the wealth decay is greater with higher fractions. The best scenario differs for the
low fraction strategies, but the growth path is almost monotone in the fraction. The
mean-standard deviation trade-off demonstrates the inefficiency of levered strategies
(greater than full Kelly) which, as shown, are growth-security dominated and to be
avoided in practice by responsible traders.
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(a) Maximum

(b) Minimum

Figure 3: Trajectories with Final Wealth Extremes for the Ziemba and Hausch Model
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(a) Inverse Cumulative

(b) Normal Plot

Figure 4: Final Ln(Wealth) Distributions by Fraction for the Ziemba and Hausch Model
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Figure 5: Mean-Std Tradeoff for the Ziemba and Hausch Model

Bicksler and Thorp Example I - Uniform Returns

There is one risky asset R with mean return of +12.5%, that is uniformly distributed
between -25% and +50% for each dollar invested. Assume we can lend or borrow capital
at a risk free rate r = 0.0. Let λ be the proportion of capital invested in the risky asset,
where λ ranges from 0.4 to 2.4. So λ = 2.4 means $1.4 is borrowed for each $1 of current
wealth and $2.40 is invested in the risky asset. The Kelly optimal growth investment in
the risky asset is x = 2.8655. The Kelly fractions for the different values of λ are shown
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in Table 5.2 Bicksler and Thorp used 10 and 20 yearly decision periods, and 50 simulated
scenarios. We use 40 yearly decision periods, with 3000 scenarios.

Proportion: λ 0.4 0.8 1.2 1.6 2.0 2.4
Fraction: f 0.140 0.279 0.419 0.558 0.698 0.838

Table 5: The Investment Proportions and Kelly Fractions for the Bicksler and Thorp
Example I

The numerical results from the simulation with T = 40 are in Tables 6 - 8. Although the
Kelly investment is levered, the fractions in this case are less than 1.

In this experiment the Kelly proportion is high, based on the attractiveness of the in-
vestment in stock. The largest fraction (0.838k) has high returns, although in the worst
scenario most of the wealth is lost. The trajectories for the highest and lowest terminal
wealth scenarios are displayed in Figure 6. The highest rate of growth is for the highest
fraction, and correspondingly it has the largest wealth fallback.

The distribution of terminal wealth in Figure 7 illustrates the growth of the f = 0.838k
strategy. It intersects the normal probability plot for other strategies very early and in-
creases its advantage. The linearity of the plots for all strategies is evidence of the log-
normality of final wealth. The inverse cumulative distribution plot indicates that the chance
of losses is small - the horizontal line indicates the log of initial wealth.

As further evidence of the superiority of the f = 0.838k strategy consider the mean and
standard deviation of log-wealth in Figure 8. The growth rate (mean ln(Wealth)) continues
to increase since the fractional strategies are less then full Kelly. So there is no more than
full Kelly over betting in this strategy.

2The formula relating λ and f for this experiment is as follows. For the problem

Maxx {E(ln(1 + r + x(R− r)} ,

where R is uniform on [a, b] and r =the risk free rate. The first order conditionZ b

a

R− r
1 + r + x(R− r) ×

1

b− adR = 0,

reduces to

x(b− a) = (1 + r)ln

„
1 + r + x(b− r)
1 + r + x(a− r)

«
⇐⇒

»
1 + r + x(b− r)
1 + r + x(a− r)

– 1
x

= e
b−a
1+r .

For a = −0.25, b = 0.5, r = 0. The equation becomes»
1 + 0.5x

1− 0.25x

– 1
x

= e0.75,

with a solution x = 2.8655.
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(a) Maximum

(b) Minimum

Figure 6: Trajectories with Final Wealth Extremes for the Bicksler and Thorp Example I
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(a) Inverse Cumulative

(b) Normal Plot

Figure 7: Final Ln(Wealth) Distributions by Fraction: Bicksler-Thorp Example I

17



Kelly simulations MacLean, Thorp and Ziemba

Fraction
Statistic 0.14k 0.28k 0.42k 0.56k 0.70k 0.84k

Max 34435.74 743361.14 11155417.33 124068469.50 1070576212.0 7399787898
Mean 7045.27 45675.75 275262.93 1538429.88 7877534.72 36387516.18
Min 728.45 425.57 197.43 70.97 18.91 3.46

St. Dev. 4016.18 60890.61 674415.54 6047844.60 44547205.57 272356844.8
Skewness 1.90 4.57 7.78 10.80 13.39 15.63
Kurtosis 6.00 31.54 83.19 150.51 223.70 301.38
> 5× 10 3000 3000 3000 3000 2999 2998

102 3000 3000 3000 2999 2999 2998
> 5× 102 3000 2999 2999 2997 2991 2976
> 103 2998 2997 2995 2991 2980 2965
> 104 529 2524 2808 2851 2847 2803
> 105 0 293 1414 2025 2243 2290

> 10
6

0 0 161 696 1165 1407

Table 6: Final Wealth Statistics by Kelly Fraction for the Bicksler and Thorp Example I

Figure 8: Mean-Std Trade-off for the Bicksler and Thorp Example I
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We have the following conclusions:

1. The statistics describing end of horizon (T = 40) wealth are again monotone in the
fraction of wealth invested in the Kelly portfolio. Specifically the maximum terminal
wealth and the mean terminal wealth increase in the Kelly fraction. In contrast
the minimum wealth decreases as the fraction increases and the standard deviation
grows as the fraction increases. The growth and decay are much more pronounced
then was the case in experiment 1. The minimum still remains above 0 since the
fraction of Kelly is less than 1. There is a trade-off between wealth growth and
risk, but the advantage of leveraged investment is clear. As illustrated with the
cumulative distributions in Figure 7, the log-normality holds and the upside growth
is more pronounced than the downside loss. Of course, the fractions are less than 1
so improved growth is expected.

2. The maximum and minimum final wealth trajectories clearly show the wealth growth
- risk of various strategies. The mean-standard deviation trade-off favors the largest
fraction, even though it is highly levered.

Bicksler - Thorp Example II - Equity versus Cash

In the third experiment there are two assets: US equities and US T-bills. According
to Siegel (2002), during 1926-2001 US equities returned 10.2% with a yearly standard
deviation of 20.3%, and the mean return was 3.9% for short term government T-bills with
zero standard deviation. We assume the choice is between these two assets in each period.
The Kelly strategy is to invest a proportion of wealth x = 1.5288 in equities and sell
short the T-bill at 1 − x = −0.5228 of current wealth. With the short selling and levered
strategies, there is a chance of substantial losses. For the simulations, the proportion: λ of
wealth invested in equities3 and the corresponding Kelly fraction f are provided in Table
7. Bicksler and Thorp used 10 and 20 yearly decision periods, and 50 simulated scenarios.
We use 40 yearly decision periods, with 3000 scenarios.

The results from the simulations with experiment 3 appear in Tables 8 - 11. The striking
aspects of the statistics in Table 8 are the sizable gains and losses. For the most aggressive

3The formula relating λ and f for this example is as follows. For the problem

Maxx {E(ln(1 + r + x(R− r)} ,

where R is assumed to be Gaussian with mean µR and standard deviation σR, and r =the risk free rate.
The solution is given by Merton (1990) as

x =
µR − r
σR

.

Since µR = 0.102, σR = 0.203, r = 0.039, the Kelly strategy is x = 1.5288.
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λ 0.4 0.8 1.2 1.6 2.0 2.4
f 0.26 0.52 0.78 1.05 1.31 1.57

Table 7: Kelly Fractions for the Bicksler and Thorp (1973) Example II

strategy (1.57k), it is possible to lose 10,000 times the initial wealth. This assumes that
the shortselling is permissable through to the decision period at the horizon T=40.

Table 8: Final Wealth Statistics by Kelly Fraction for the Bicksler and Thorp Example II
Fraction

Statistic 0.26k 0.52k 0.78k 1.05k 1.31k 1.57k
Max 65842.09 673058.45 5283234.28 33314627.67 174061071.4 769753090
Mean 12110.34 30937.03 76573.69 182645.07 416382.80 895952.14
Min 2367.92 701.28 -4969.78 -133456.35 -6862762.81 -102513723.8

St. Dev. 6147.30 35980.17 174683.09 815091.13 3634459.82 15004915.61
Skewness 1.54 4.88 13.01 25.92 38.22 45.45
Kurtosis 4.90 51.85 305.66 950.96 1755.18 2303.38
> 5× 10 3000 3000 2998 2970 2713 2184

102 3000 3000 2998 2955 2671 2129
> 5× 102 3000 3000 2986 2866 2520 1960
> 103 3000 2996 2954 2779 2409 1875
> 104 1698 2276 2273 2112 1794 1375
> 105 0 132 575 838 877 751

> 10
6

0 0 9 116 216 270

The highest and lowest final wealth trajectories are presented in Figure 9. In the worst
case, the trajectory is terminated to indicate the timing of vanishing wealth. There is quick
bankruptcy for the aggressive strategies.

The substantial downside is further illustrated in the distribution of final wealth plot in
Figure 10. The normal probability plots are almost linear on the upside (log-normality),
but the downside is much more extreme than log-normal for all strategies except for 0.52k.
Even the full Kelly is very risky in this example largely because the basic position is levered.
The inverse cumulative distribution shows a high probability of large losses with the most
aggressive strategies. In constructing these plots the negative growth was incorporated
with the formula growth = [signWT ] ln(|WT |).

The mean-standard deviation trade-off in Figure 11 provides more evidence concerning
the riskyness of the high proportion strategies. When the fraction exceeds the full Kelly,
the drop-off in growth rate is sharp, and that is matched by a sharp increase in standard

20



Kelly simulations MacLean, Thorp and Ziemba

(a) Maximum

(b) Minimum

Figure 9: Trajectories with Final Wealth Extremes for the Bicksler and Thorp Example II
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(a) Inverse Cumulative

(b) Normal Plot

Figure 10: Final Ln(Wealth) Distributions by Fraction for the Bicksler and Thorp Example
II
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deviation.

Figure 11: Mean-Std Tradeoff: Bicksler and Thorp Example II

The results in experiment 3 lead to the following conclusions.

1. The statistics describing the end of the horizon (T = 40) wealth are again monotone
in the fraction of wealth invested in the Kelly portfolio. Specifically (i) the maximum
terminal wealth and the mean terminal wealth increase in the Kelly fraction; and (ii)
the minimum wealth decreases as the fraction increases and the standard deviation
grows as the fraction increases. The growth and decay are pronounced and it is
possible to have extremely large losses. The fraction of the Kelly optimal growth
strategy exceeds 1 in the most levered strategies and this is very risky. There is a
trade-off between return and risk, but the mean for the levered strategies is growing
far less than the standard deviation. The disadvantage of leveraged investment is
illustrated with the cumulative distributions in Figure 10. The log-normality of final
wealth does not hold for the levered strategies.

2. The maximum and minimum final wealth trajectories show the return - risk of levered
strategies. The worst and best scenarios are not same for all Kelly fractions. The
worst scenario for the most levered strategy shows the rapid decline in wealth. The
mean-standard deviation trade-off confirms the extreme riskyness of the aggressive
strategies.
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Final Comments

The Kelly optimal capital growth investment strategy is an attractive approach to wealth
creation. In addition to maximizing the asymptotic rate of long term growth of capital, it
avoids bankruptcy and overwhelms any essentially different investment strategy in the long
run. See MacLean, Thorp and Ziemba (2010b) for a discussion of the good and bad prop-
erties of these strategies. However, automatic use of the Kelly strategy in any investment
situation is risky and can be dangerous. It requires some adaptation to the investment
environment: rates of return, volatilities, correlation of alternative assets, estimation error,
risk aversion preferences, and planning horizon are all important aspects of the invest-
ment process. Poundstone’s (2005) book, while a very good read, does not explain these
important investment aspects and the use of Kelly strategies by advisory firms such as
Morningstar and Motley Fools is flawed. The experiments in this paper represent some of
the diversity in the investment environment. By considering the Kelly and its variants we
get a concrete look at the plusses and minusses of the capital growth model. The main
points from the Bicksler and Thorp (1973) and Ziemba and Hausch (1986) studies are
confirmed.

• The wealth accumulated from the full Kelly strategy does not stochastically dominate
fractional Kelly wealth. The downside is often much more favorable with a fraction
less than one.

• There is a tradeoff of risk and return with the fraction invested in the Kelly portfo-
lio. In cases of large uncertainty, either from intrinsic volatility or estimation error,
security is gained by reducing the Kelly investment fraction.

• The full Kelly strategy can be highly levered. While the use of borrowing can be
effective in generating large returns on investment, increased leveraging beyond the
full Kelly is not warranted as it is growth-security dominated. The returns from
over-levered investment are offset by a growing probability of bankruptcy.

• The Kelly strategy is not merely a long term approach. Proper use in the short and
medium run can achieve wealth goals while protecting against drawdowns. MacLean,
Sanegre, Zhao and Ziemba (2004) and MacLean, Zhao and Ziemba (2009) discuss a
strategy to reduce the Kelly fraction to stay above a prespecified wealth path with
high probability.

The great economist Paul Samuelson was a long time critic of the Kelly strategy which
maximizes the expected logarithm of final wealth, see, for example, Samuelson (1969,
1971, 1979) and Merton and Samuelson (1974). His criticisms are well dealt with in this
simulation paper and we see no disagreement with his various analytic points:

1. the Kelly strategy maximizes the asymptotic long run growth of the investor’s wealth,
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and we agree;

2. the Kelly strategy maximizes expected utility of only logarithmic utility and not
necessarily any other utility function, and we agree; and

3. the Kelly strategy always leads to more wealth than any essentially different strategy;
this we know from this paper is not true since it is possible to have a large number
of very good investments and still lose most of one’s fortune.

Samuelson seemed to imply that Kelly proponents thought that the Kelly strategy maxi-
mizes for other utility functions but this was neither argued nor implied.

It is true that the expected value of wealth is higher with the Kelly strategy but bad
outcomes are very possible.

In correspondence with Ziemba (private correspondence, 2006, 2007, 2008) he seems to feel
that half Kelly or u(w) = − 1

w explains the data better. We agree that in practice, half Kelly
is a toned down version of full Kelly that provides a lot more security to compensate for
its loss in long term growth. Samuelson proposes an analysis of three investors − 1

w , logw
and w

1
2 . In Ziemba (2010) these are explored adding two tail investors αwα, α→ −∞ the

safest investor and w, namely α = 1, the riskiest investor which span the range of absolute
Arrow-Pratt risk aversion from 0 to ∞.
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